The GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway

نویسندگان

  • Yvona Ward
  • Seow-Fong Yap
  • V. Ravichandran
  • Fumio Matsumura
  • Masaaki Ito
  • Beth Spinelli
  • Kathleen Kelly
چکیده

The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for which biochemical functions have been mostly unknown. Here we show that Gem and Rad interface with the Rho pathway through association with the Rho effectors, Rho kinase (ROK) alpha and beta. Gem binds ROKbeta independently of RhoA in the ROKbeta coiled-coil region adjacent to the Rho binding domain. Expression of Gem inhibited ROKbeta-mediated phosphorylation of myosin light chain and myosin phosphatase, but not LIM kinase, suggesting that Gem acts by modifying the substrate specificity of ROKbeta. Gem or Rad expression led to cell flattening and neurite extension in N1E-115 neuroblastoma cells. In interference assays, Gem opposed ROKbeta- and Rad opposed ROKalpha-mediated cell rounding and neurite retraction. Gem did not oppose cell rounding initiated by ROKbeta containing a deletion of the Gem binding region, demonstrating that Gem binding to ROKbeta is required for the effects observed. In epithelial or fibroblastic cells, Gem or Rad expression resulted in stress fiber and focal adhesion disassembly. In addition, Gem reverted the anchorage-independent growth and invasiveness of Dbl-transformed fibroblasts. These results identify physiological roles for Gem and Rad in cytoskeletal regulation mediated by ROK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity.

Gem is a small GTP-binding protein that has a ras-like core and extended chains at each terminus. The primary structure of Gem and other RGK family members (Rad, Rem, and Rem2) predicts a GTPase deficiency, leading to the question of how Gem functional activity is regulated. Two functions for Gem have been demonstrated, including inhibition of voltage-gated calcium channel activity and inhibiti...

متن کامل

Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension

In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells dec...

متن کامل

Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway.

Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca2+ channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane-cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin str...

متن کامل

Gem GTPase and tau: morphological changes induced by gem GTPase in cho cells are antagonized by tau.

A series of observations have indicated that tau, one of the major microtubule-associated proteins, is involved in neuronal cell morphogenesis and axonal maintenance. Tau is also the major component of paired helical filaments found in brains affected by Alzheimer's disease. To explore an as yet unidentified role of tau in vivo, approximately 11,000 mRNAs were profiled from tau-deficient mouse ...

متن کامل

The role of the RhoA/rho-kinase pathway in pulmonary hypertension.

The small GTP-binding protein, RhoA, and its downstream effector protein, rho-kinase, have been implicated in the pathogenesis of a number of cardiovascular diseases. The activation of rho-kinase is involved in the development of increased vascular tone, endothelial dysfunction, inflammation, and restenosis; and that the inhibition of rho-kinase has been shown to have a beneficial effect in a v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2002